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2. Our Contribution

Going distributed: why? 
Large scale machine learning is moving to the 
distributed setting due to growing size of 
datasets/models, and modern learning paradigms 
like Federated learning.

Synchronous SGD: how?
- mini-batches distributed among workers
- each worker makes forward-backward pass and computes the gradients
- workers send gradients to parameter server
- parameter server sums it up and sends it back to all workers
- each worker makes a step

Bottleneck: where?
Slow communication overwhelms local computations:

• parameter vector for large models can weight up to 0.5 GB 
• synchronize every fraction of a second
• mini batch size has limit to its growth 

    computation resources are wasted

Common approaches:
 

Quantization Sparsification 

•Quantizing gradients can give a constant factor 
decrease in communication cost.

•Simplest quantization is 16-bit, however even 
2-bit (TernGrad) and 1-bit (SignSGD) have been 
successful.

•Quantization techniques can in principle be 
combined with gradient sparsification

• Existing techniques either communicate Ω(Wd) in the 
worst case, or are heuristics; W - number of workers,     
d - dimension of gradient. 

• Stich et al.’18 showed that SGD (on 1 machine) with 
top-k gradient updates and error accumulation has 
desirable convergence properties. 

• Alistarh et al. ’18 Top-k SGD (assumes that global top k 
is close to sum of local top k)

• Deep gradient compression  (no theoretical guarantees)

Adopted sketching based compression technique:
We introduce SKETCHED-SGD, an algorithm for carrying out distributed SGD by communicating sketches instead 
of full gradients

Theoretical guarantees:
Converges at O(1/T) rate, at par with SGD for smooth strongly convex functions.
Communicates O(k log2 d), size of sketch, 0< k < d, d: dimension of model.

Scalability:
More workers - Increasing the number of workers W doesn’t affect  the rate of convergence (Federated learning)
Bigger models - Increasing the model size d increases the compression ratio d/k log2 d.

Experimental verification: 
40x compression for the transformer network with 90M parameters
Scaling to 256 workers and beyond, drastically outperforming local topK competitor 

4. Algorithm

Theory: 

Practical performance: 
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Example: 
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Streaming model

 

BLEU scores on the test data achieved for vanilla 
distributed SGD, top-k SGD, and SKETCHED-SGD with 
20x and 40x compression.. Larger BLEU score is better. 

Comparison between SKETCHED-SGD and local 
top-k SGD on CIFAR10. The best overall 
compression that local top-k can achieve for 
many workers is 2x, this happens due to local 
topKs being disjoint, therefore parameter server 
after aggregation sends back almost entire 
gradient vector. 

Tradeoff between compression and model accuracy for 
a residual network trained on CIFAR-10 for k = 50000 
and 100000. The (nearly overlapping) solid orange and 
dashed blue lines show the accuracy achieved by 
top-k SGD for the two values of k, and the black line 
shows the accuracy achieved by vanilla distributed 
SGD. 
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Computational overhead:

Simple to parallelize the sketching part:

100x acceleration on modern GPU
Specifics of distributed SGD application:  

- gradient vector is already on GPU 
- for reasonable d, all hashes can be precomputed 
- one-liner to parallelize using pytorch framework (20x speed up)

*equal contribution


