
Communication-efficient Distributed SGD with Sketching
 Nikita Ivkin*, Daniel Rothchild*, Enayat Ullah*, Vladimir Braverman, Ion Stoica, Raman Arora

1. Introduction 3. Sketching 5. Results

2. Our Contribution

Going distributed: why?
Large scale machine learning is moving to the
distributed setting due to growing size of
datasets/models, and modern learning paradigms
like Federated learning.

Synchronous SGD: how?
- mini-batches distributed among workers
- each worker makes forward-backward pass and computes the gradients
- workers send gradients to parameter server
- parameter server sums it up and sends it back to all workers
- each worker makes a step

Bottleneck: where?
Slow communication overwhelms local computations:

• parameter vector for large models can weight up to 0.5 GB
• synchronize every fraction of a second
• mini batch size has limit to its growth

 computation resources are wasted

Common approaches:

Quantization Sparsification

•Quantizing gradients can give a constant factor
decrease in communication cost.

•Simplest quantization is 16-bit, however even
2-bit (TernGrad) and 1-bit (SignSGD) have been
successful.

•Quantization techniques can in principle be
combined with gradient sparsification

• Existing techniques either communicate Ω(Wd) in the
worst case, or are heuristics; W - number of workers,
d - dimension of gradient.

• Stich et al.’18 showed that SGD (on 1 machine) with
top-k gradient updates and error accumulation has
desirable convergence properties.

• Alistarh et al. ’18 Top-k SGD (assumes that global top k
is close to sum of local top k)

• Deep gradient compression (no theoretical guarantees)

Adopted sketching based compression technique:
We introduce SKETCHED-SGD, an algorithm for carrying out distributed SGD by communicating sketches instead
of full gradients

Theoretical guarantees:
Converges at O(1/T) rate, at par with SGD for smooth strongly convex functions.
Communicates O(k log2 d), size of sketch, 0< k < d, d: dimension of model.

Scalability:
More workers - Increasing the number of workers W doesn’t affect the rate of convergence (Federated learning)
Bigger models - Increasing the model size d increases the compression ratio d/k log2 d.

Experimental verification:
40x compression for the transformer network with 90M parameters
Scaling to 256 workers and beyond, drastically outperforming local topK competitor

4. Algorithm

Theory:

Practical performance:

1 1 2 4 5 5 6 3 7 5 2 5 5 3 4 7 5

i f
i

1 2

2 2

3 2

4 2

5 6

6 1

7 2

Example:

Approximate answer with
high probability is OK

Streaming model

BLEU scores on the test data achieved for vanilla
distributed SGD, top-k SGD, and SKETCHED-SGD with
20x and 40x compression.. Larger BLEU score is better.

Comparison between SKETCHED-SGD and local
top-k SGD on CIFAR10. The best overall
compression that local top-k can achieve for
many workers is 2x, this happens due to local
topKs being disjoint, therefore parameter server
after aggregation sends back almost entire
gradient vector.

Tradeoff between compression and model accuracy for
a residual network trained on CIFAR-10 for k = 50000
and 100000. The (nearly overlapping) solid orange and
dashed blue lines show the accuracy achieved by
top-k SGD for the two values of k, and the black line
shows the accuracy achieved by vanilla distributed
SGD.

90M 70M

Computational overhead:

Simple to parallelize the sketching part:

100x acceleration on modern GPU
Specifics of distributed SGD application:

- gradient vector is already on GPU
- for reasonable d, all hashes can be precomputed
- one-liner to parallelize using pytorch framework (20x speed up)

*equal contribution

