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Going distributed: why?

● Large scale machine learning is moving to the distributed setting due to 
growing size of datasets, which does not fit in one GPU, and modern learning 
paradigms like Federated learning.

● Master-workers topology. Workers compute gradients, communicate to 
master; master aggregates these gradients, updates the model, and 
communicates back the updated parameters.

● Problem - Slow communication overwhelms local computations.
● Resolution(s) - Compress the gradients

○ Intrinsic low dimensional structure
○ Trade-off communication with convergence

● Example of compression - sparsification, quantization

● Large scale machine learning is moving to the distributed setting due to 
growing size of datasets/models, and modern learning paradigms like 
Federated learning.



Going distributed: how? 

data model hybrid

most popular



Going distributed: how? 

parameter 
server

sync

batch 1 batch 2 batch m

all-gather

hybrid
topology



Going distributed: how? 
parameter 

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:



Going distributed: how? 
parameter 

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers



Going distributed: how? 
parameter 

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass 

and computes the gradients

g1 g2 gm



Going distributed: how? 
parameter 

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass 

and computes the gradients
- workers send gradients to parameter server

g1 g2 gm



Going distributed: how? 
parameter 

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass 

and computes the gradients
- workers send gradients to parameter server

g1, g2, …, gm



Going distributed: how? 
parameter 

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass 

and computes the gradients
- workers send gradients to parameter server
- parameter server sums it up and sends it 

back to all workers

G = g1+ g2+ … + gm



Going distributed: how? 
parameter 

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass 

and computes the gradients
- workers send gradients to parameter server
- parameter server sums it up and sends it 

back to all workers

G 



Going distributed: how? 
parameter 

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass 

and computes the gradients
- workers send gradients to parameter server
- parameter server sums it up and sends it 

back to all workers
G G G 



Going distributed: how? 
parameter 

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass 

and computes the gradients
- workers send gradients to parameter server
- parameter server sums it up and sends it 

back to all workers
- each worker makes a step



Going distributed: what’s the problem?
parameter 

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

● Slow communication overwhelms local 
computations:

○ parameter vector for large models can 
weight up to 0.5 GB 

○ synchronize every fraction of a 
second entire parameter vector every synchronization



Going distributed: what’s the problem?
parameter 

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m
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computations:

○ parameter vector for large models can 
weight up to 0.5 GB 

○ synchronize every fraction of a 
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entire parameter vector every synchronization
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Going distributed: how others deal with it? 
● Compressing the gradients: 

Quantization

Sparsification
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APA

● Quantizing gradients can give a constant factor decrease in communication cost.
● Simplest quantization to 16-bit, but all the way to 2-bit (TernGrad [1]) and 1-bit 

(SignSGD [2]) have been successful.
● Quantization techniques can in principle be combined with gradient sparsification

Quantization



Sparsification

[1] Stich, Sebastian U., Jean-aptiste Cordonnier, and Martin Jaggi. "Sparsified sgd with memory." Advances in Neural Information Processing Systems. 2018.
[2] Alistarh, Dan, et al. "The convergence of sparsified gradient methods." Advances in Neural Information Processing Systems. 2018.
[3] Lin, Yujun, et al. "Deep gradient compression: Reducing the communication bandwidth for distributed training." arXiv preprint arXiv:1712.01887 (2017).

APA

● Existing techniques either communicate Ω(Wd) in the worst case, or are 
heuristics; W - number of workers, d - dimension of gradient.

● [1] showed that SGD (on 1 machine) with top-k gradient updates and error 
accumulation has desirable convergence properties.

● Q. Can we extend the top-k to the distributed setting? 
○ MEM-SGD [1] (for 1 machine, extension to distributed setting is sequential) 
○ top-k SGD [2] (assumes that global top k is close to sum of local top k) 
○ Deep gradient compression [3] (no theoretical guarantees).

● We resolve the above using sketches!
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Algorithm and theory

❑ Theoretical guarantees
● Converges at O(1/WT) rate, at par with SGD 

for smooth strongly convex functions, where 
W is the number of workers.

● Communicates O(k log2 d), size of sketch,
0< k < d, d: dimension of model.

❏ Scalability
● More workers - Increasing the number of 

workers W increases the rate of convergence 
(suitable for Federated learning)

● Bigger models - Increasing the model size d 
increases the compression ratio d/k log2 d. 



Empirical Results

BLEU scores on the test data achieved for vanilla distributed 
SGD, top-k SGD, and SKETCHED-SGD with 20x and 40x 
compression.. Larger BLEU score is better. 

90M              70M



Empirical Results

Comparison between SKETCHED-SGD and local top-k SGD on CIFAR10. 
The best overall compression that local top-k can achieve for many workers is 2x.



D
at

a 
pa

ra
lle

lis
m

M
od

el
 p

ar
al

le
lis

m
 

Computational overhead
 

compute hashes update counters

Simple to parallelize the sketching part:

100x acceleration on modern GPU 

Specifics of distributed SGD application:
● gradient vector is already on GPU
● for reasonable d, all hashes can be precomputed
● one-liner to parallelize using pytorch framework (20x speed up)  



Thanks a lot! 


