
Communication-efficient

Distributed SGD with Sketching

Nikita Ivkin*, Daniel Rothchild*, Enayat Ullah*,
Vladimir Braverman, Ion Stoica, Raman Arora

* equal contribution

Going distributed: why?

● Large scale machine learning is moving to the distributed setting due to
growing size of datasets, which does not fit in one GPU, and modern learning
paradigms like Federated learning.

● Master-workers topology. Workers compute gradients, communicate to
master; master aggregates these gradients, updates the model, and
communicates back the updated parameters.

● Problem - Slow communication overwhelms local computations.
● Resolution(s) - Compress the gradients

○ Intrinsic low dimensional structure
○ Trade-off communication with convergence

● Example of compression - sparsification, quantization

● Large scale machine learning is moving to the distributed setting due to
growing size of datasets/models, and modern learning paradigms like
Federated learning.

Going distributed: how?

data model hybrid

most popular

Going distributed: how?

parameter
server

sync

batch 1 batch 2 batch m

all-gather

hybrid
topology

Going distributed: how?
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

Going distributed: how?
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers

Going distributed: how?
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes the gradients

g1 g2 gm

Going distributed: how?
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes the gradients
- workers send gradients to parameter server

g1 g2 gm

Going distributed: how?
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes the gradients
- workers send gradients to parameter server

g1, g2, …, gm

Going distributed: how?
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes the gradients
- workers send gradients to parameter server
- parameter server sums it up and sends it

back to all workers

G = g1+ g2+ … + gm

Going distributed: how?
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes the gradients
- workers send gradients to parameter server
- parameter server sums it up and sends it

back to all workers

G

Going distributed: how?
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes the gradients
- workers send gradients to parameter server
- parameter server sums it up and sends it

back to all workers
G G G

Going distributed: how?
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes the gradients
- workers send gradients to parameter server
- parameter server sums it up and sends it

back to all workers
- each worker makes a step

Going distributed: what’s the problem?
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

● Slow communication overwhelms local
computations:

○ parameter vector for large models can
weight up to 0.5 GB

○ synchronize every fraction of a
second entire parameter vector every synchronization

Going distributed: what’s the problem?
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

● Slow communication overwhelms local
computations:

○ parameter vector for large models can
weight up to 0.5 GB

○ synchronize every fraction of a
second

● Mini batch size has limit to its growth
entire parameter vector every synchronization

computation resources
are wasted

Going distributed: how others deal with it?
● Compressing the gradients:

Quantization

Sparsification

[1] Wen, Wei, et al. "Terngrad: Ternary gradients to reduce communication in distributed deep learning." Advances in neural information processing systems. 2017.
[2] Bernstein, Jeremy, et al. "signSGD: Compressed optimisation for non-convex problems." arXiv preprint arXiv:1802.04434 (2018).
[3] Karimireddy, Sai Praneeth, et al. "Error Feedback Fixes SignSGD and other Gradient Compression Schemes." arXiv preprint arXiv:1901.09847 (2019).

APA

● Quantizing gradients can give a constant factor decrease in communication cost.
● Simplest quantization to 16-bit, but all the way to 2-bit (TernGrad [1]) and 1-bit

(SignSGD [2]) have been successful.
● Quantization techniques can in principle be combined with gradient sparsification

Quantization

Sparsification

[1] Stich, Sebastian U., Jean-aptiste Cordonnier, and Martin Jaggi. "Sparsified sgd with memory." Advances in Neural Information Processing Systems. 2018.
[2] Alistarh, Dan, et al. "The convergence of sparsified gradient methods." Advances in Neural Information Processing Systems. 2018.
[3] Lin, Yujun, et al. "Deep gradient compression: Reducing the communication bandwidth for distributed training." arXiv preprint arXiv:1712.01887 (2017).

APA

● Existing techniques either communicate Ω(Wd) in the worst case, or are
heuristics; W - number of workers, d - dimension of gradient.

● [1] showed that SGD (on 1 machine) with top-k gradient updates and error
accumulation has desirable convergence properties.

● Q. Can we extend the top-k to the distributed setting?
○ MEM-SGD [1] (for 1 machine, extension to distributed setting is sequential)
○ top-k SGD [2] (assumes that global top k is close to sum of local top k)
○ Deep gradient compression [3] (no theoretical guarantees).

● We resolve the above using sketches!

 9

 4

2

 5

2

3 frequencies
of balls

Want to find:

+1 +1 +1 +1 -1 +1 +1 +1 +1 +1 -1 -1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1

+1

+1

-1

+1

-1

-1

+/-1
equiprobably,
independent

0 1 2 3 4 3 4 5 6 7 8 7 6 7 8 9 10 11 12 13 14 15 16 15 14 13 12

+1 +1 +1 +1 -1 +1 +1 +1 +1 +1 -1 -1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1

+1

+1

-1

+1

-1

-1

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 -1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1

+/-1
equiprobably,
independent

22

Count Sketch

coordinate updates

 +1 7

sign
hash

bucket
hash

Count Sketch

Mergebility

Compression scheme
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

Compression scheme
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers

Compression scheme
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes and sketch the gradients

g1 g2 gm

Compression scheme
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes and sketch the gradients

S(g1) S(g2) S(gm)

Compression scheme
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes and sketch the gradients
- workers send sketches to parameter server

S(g1) S(g2) S(gm)

Compression scheme
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes and sketch the gradients
- workers send sketches to parameter server

S1, S2, …, Sm

Compression scheme
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes and sketch the gradients
- workers send sketches to parameter server
- parameter server merge the sketches,

extract top k and send it back

S = S1+ S2+ … + Sm

Compression scheme
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes and sketch the gradients
- workers send sketches to parameter server
- parameter server merge the sketches,

extract top k and send it back

G’ = topk(S)

Compression scheme
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker mG’ G’ G’

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes and sketch the gradients
- workers send sketches to parameter server
- parameter server merge the sketches,

extract top k and send it back

Compression scheme
parameter

server

workers

batch 1

worker 1

data

batch 2

worker 2

batch m

worker m

Synchronization with the parameter server:

- mini-batches distributed among workers
- each worker makes forward-backward pass

and computes and sketch the gradients
- workers send sketches to parameter server
- parameter server merge the sketches,

extract top k and send it back
- each worker makes a step

Algorithm and theory

❑ Theoretical guarantees
● Converges at O(1/WT) rate, at par with SGD

for smooth strongly convex functions, where
W is the number of workers.

● Communicates O(k log2 d), size of sketch,
0< k < d, d: dimension of model.

❏ Scalability
● More workers - Increasing the number of

workers W increases the rate of convergence
(suitable for Federated learning)

● Bigger models - Increasing the model size d
increases the compression ratio d/k log2 d.

Empirical Results

BLEU scores on the test data achieved for vanilla distributed
SGD, top-k SGD, and SKETCHED-SGD with 20x and 40x
compression.. Larger BLEU score is better.

90M 70M

Empirical Results

Comparison between SKETCHED-SGD and local top-k SGD on CIFAR10.
The best overall compression that local top-k can achieve for many workers is 2x.

D
at

a
pa

ra
lle

lis
m

M
od

el
 p

ar
al

le
lis

m

Computational overhead

compute hashes update counters

Simple to parallelize the sketching part:

100x acceleration on modern GPU

Specifics of distributed SGD application:
● gradient vector is already on GPU
● for reasonable d, all hashes can be precomputed
● one-liner to parallelize using pytorch framework (20x speed up)

Thanks a lot!

